FATORES ASSOCIADOS À OBESIDADE: UMA BREVE REVISÃO NARRATIVA

Autores

DOI:

https://doi.org/10.53612/recisatec.v2i5.108

Palavras-chave:

Obesidade, Fatores Ambientais, Genética, Metabolismo.

Resumo

Considerada um problema de saúde pública, a obesidade é uma patologia comumente observada em todas as faixas etárias, não distingue sexo, posição social ou classe econômica. Estudos apontam uma afinidade entre vários fatores e o estilo de vida e suas correlações, produzindo um quadro de sobrepeso, tendo como produto final a adiposidade. Sendo assim, o presente estudo teve como objetivo realizar uma revisão bibliográfica narrativa informando e   atualizado os recentes e mais significativos estudos sobre o tema. Foram selecionados artigos nacionais e internacionais entre os anos de 2010 e 2020 nas bases de dados Scientific   Electronic   Library   Online (Scielo), Portal Periódicos Capes, US National Library    of    Medicine National    Institutes    of Health Search database (PubMed) e   Science Medline. O montante dessa revisão apontara correlação significativa entre os fatores ambientais, comportamentais, genético e fisiológicos como determinantes no processo de aquisição da obesidade. Apesar ser   multifatorial as causas da obesidade o fator   ambiental é visto como um dos principais determinantes para o aumento desta patologia, na forma em que estimula o consumo exagerado de calorias combinado a um gasto energético diminuído.

Downloads

Não há dados estatísticos.

Biografia do Autor

Ozanildo Vilaça do Nascimento

Docente da Faculdade de Educação Física e Fisioterapia-UFAM Pós-doutorando no programa de Pós-graduação em Biotecnologia da Universidade Federal do Amazonas 

Whendel Mesquita do Nascimento

Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal do Brasil (PPGBionorte), Manaus, AM, Brasil.

Caroline dos Santos Melo

Formada em Biomedicina pelo Centro Universitário do Norte UNINORTE Manaus, AM, Brasil.

Emerson Silva Lima

Universidade Federal do Amazonas, Faculdade de Ciências Farmacêuticas, Manaus, estado do Amazonas, Brasil. Pesquisador na área de antioxidantes de origem natural e produtos derivados de plantas amazónicas com efeito curativo ou preventivo em doenças metabólicas e na área dos dermocosméticos.

Referências

ALPERT, M.A.; OMRAN, J.; BOSTICK, B.P. Effects of obesity on cardiovascular hemodynamics, cardiac morphology, and ventricular function. Current obesity reports, 5(4), 424-434.2016 DOI: https://doi.org/10.1007/s13679-016-0235-6

BLEICH, S.N.; VERCAMMEN, K.A.; ZATZ, L.Y.; FRELIER, J.M.; EBBELING, C.B.; PEETERS, A. Interventions to prevent global childhood overweight and obesity: a systematic review. The Lancet Diabetes & Endocrinology, 6(4), 332-346.2018. DOI: https://doi.org/10.1016/S2213-8587(17)30358-3

BORER, K.T. Counterregulation of insulin by leptin as key component of autonomic regulation of body weight. World journal of diabetes, 5(5), 606.2014 DOI: https://doi.org/10.4239/wjd.v5.i5.606

BRAY, G.A.; KIM, K.K.; WILDING, J.P.H.; World obesity federation. Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obesity Reviews, 18(7), 715-723.2017. DOI: https://doi.org/10.1111/obr.12551

BRENNAN-OLSEN, S L.; SOLOVIEVA, S.; VIIKARI-JUNTURA, E.; ACKERMAN, I.N., BOWE, S.J.; KOWAL, P.; PAGE, R.S. Arthritis diagnosis and symptoms are positively associated with specific physical job exposures in lower-and middle-income countries: cross-sectional results from the World Health Organization’s Study on global AGEing and adult health (SAGE). BMC public health, 18(1), 719.2018 DOI: https://doi.org/10.1186/s12889-018-5631-2

BRIGGS, D.I.; ENRIORI, P.J.; LEMUS, M. B.; COWLEY, M.A.; ANDREWS, Z.B. Diet-induced obesity causes ghrelin resistance in arcuate NPY/AgRP neurons. Endocrinology, 151(10), 4745-4755.2010. DOI: https://doi.org/10.1210/en.2010-0556

BRIGGS, D.I.; LOCKIE, S.H.; WU, Q.; LEMUS, M.B.; STARK, R.; ANDREWS, Z.B. Calorie-restricted weight loss reverses high-fat diet-induced ghrelin resistance, which contributes to rebound weight gain in a ghrelin-dependent manner. Endocrinology, 154(2), 709-717.2013. DOI: https://doi.org/10.1210/en.2012-1421

BROWN, K.; DECOFFE, D.; MOLCAN, E.; GIBSON, D.L. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients, 4(8), 1095-1119. 2012 DOI: https://doi.org/10.3390/nu4081095

CARVALHO, F.C.; MAGNO, M.; GUARANÁ, H.C.; PROENÇA, A.C.; CABELLO, G.M.K. CARNEIRO, J.R.I.; ROSADO, E.L. Influence of FTO rs9939609 polymorphism on appetite, ghrelin, leptin, IL6, TNFα levels, and food intake of women with morbid obesity. communities, 9, 10.2018.

HAKRABORTI, C.K. New-found link between microbiota and obesity. World journal of gastrointestinal pathophysiology, 6(4), 110.2015 DOI: https://doi.org/10.4291/wjgp.v6.i4.110

COTTRELL, E.C.; MERCER, J.G. Leptin receptors. Appetite Control, 3-21.2012. DOI: https://doi.org/10.1007/978-3-642-24716-3_1

CRUM, A.J.; CORBIN, W.R.; BROWNELL, K. D.; Salovey, P. Mind over milkshakes: mindsets, not just nutrients, determine ghrelin response. Health Psychology, 30(4), 424.2011 DOI: https://doi.org/10.1037/a0023467

CUI, H.; LÓPEZ, M.; RAHMOUNI, K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nature Reviews Endocrinology, 13(6), 338.2017 DOI: https://doi.org/10.1038/nrendo.2016.222

CZYZYK, T.A.; SAHR, A.E.; STATNICK, M.A.A model of binge‐like eating behavior in mice that does not require food deprivation or stress. Obesity, 18(9), 1710-1717.2010. DOI: https://doi.org/10.1038/oby.2010.46

DE ANDRADE AOYAMA, E.; MACEDO, W.D.L.R.; DE SOUSA, J.G.; DE FREITAS, M.M.; LEMOS, L.R. Genetics and the environment as majores risk factors for obesity. Brazilian Journal of Health Review, 1(2), 477-484.2018.

DE CASTRO, J. M.; FERREIRA, E.F.; DA SILVA, D.C.; DE OLIVEIRA, R.A.R. Prevalence of overweight and obesity and the risk factors associated in adolescents. Revista Brasileira de Obesidade, Nutrição e Emagrecimento, 12(69), 84-94.2018.

De Freitas, M.C.; de Moura, V.E.L.; do Nascimento Malta, T.E.; Ribeiro, S.L.G.; Rossi, F.E. Supressão do apetite induzida pelo exercício físico: possíveis mecanismos. Conexões, 18, e020034-e020034. 2020. DOI: https://doi.org/10.20396/conex.v18i0.8657880

DE REZENDE, L.F.M.; LOPES, M.R.; REY-LÓPEZ, J. P.; MATSUDO, V.K.R.; DO CARMO LUIZ, O. Sedentary behavior and health outcomes: an overview of systematic reviews. PloS one, 9(8), e105620.2014. DOI: https://doi.org/10.1371/journal.pone.0105620

DE GRUTTOLA, A.K.; LOW, D.; MIZOGUCHI, A.; MIZOGUCHI, E. Current understanding of dysbiosis in disease in human and animal models. Inflammatory bowel diseases, 22(5), 1137-1150.2016. DOI: https://doi.org/10.1097/MIB.0000000000000750

DIETERICH, W.; SCHINK, M.; ZOPF, Y. Microbiota in the gastrointestinal tract. Medical Sciences, 6(4), 116.2018. DOI: https://doi.org/10.3390/medsci6040116

ENTRINGER, S.; BUSS, C.; SWANSON, J. M.; COOPER, D.M.; WING, D.A.; WAFFARN, F.; WADHWA, P.D. Fetal programming of body composition, obesity, and metabolic function: the role of intrauterine stress and stress biology. Journal of nutrition and metabolism, 2012. DOI: https://doi.org/10.1155/2012/632548

FAIENZA, M. F.; WANG, D. Q.; FRÜHBECK, G.; GARRUTI, G.; PORTINCASA, P. The dangerous link between childhood and adulthood predictors of obesity and metabolic syndrome. Internal and emergency medicine, 11(2), 175-182.2016. DOI: https://doi.org/10.1007/s11739-015-1382-6

FEIJÓ, F.D.M.; BERTOLUCI, M.C.; REIS, C. Serotonin and hypothalamic control of hunger: a review. Revista da Associação Médica Brasileira, 57(1), 74-77.2011. DOI: https://doi.org/10.1016/S0104-4230(11)70020-3

FRANCISCO, L.V.; DIEZ-GARCIA, R.W. Abordagem terapêutica da obesidade: entre conceitos e preconceitos. DEMETRA: Alimentação, Nutrição & Saúde, 10(3), 2015. 705-716.2015. DOI: https://doi.org/10.12957/demetra.2015.16095

GALI RAMAMOORTHY, T.; BEGUM, G.; HARNO, E.; WHITE, A. Developmental programming of hypothalamic neuronal circuits: impact on energy balance control. Frontiers in neuroscience, 9, 126.2915. DOI: https://doi.org/10.3389/fnins.2015.00126

GLUCKMAN, P.D.; HANSON, M.A. Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. International journal of obesity, 32(7), S62-S71. 2008. DOI: https://doi.org/10.1038/ijo.2008.240

GODFREY, K.M.; COSTELLO, P.M.; LILLYCROP, K.A. The developmental environment, epigenetic biomarkers and long-term health. Journal of developmental origins of health and disease, 6(5), 399.2015. DOI: https://doi.org/10.1017/S204017441500121X

GONI, L, CUERVO, M.; MILAGRO F.I.; MARTÍNEZ, J.A. Future perspectives of personalized weight loss interventions based on nutrigenetic, epigenetic, and metagenomic data. J Nutr. 146(4):905S-912S.2016. DOI: https://doi.org/10.3945/jn.115.218354

GONZALEZ-BULNES, A.; CHAVATTE-PALMER, P. Contribution of large animals to translational research on prenatal programming of obesity and associated diseases. Current pharmaceutical biotechnology, 18(7), 541-551.2017. DOI: https://doi.org/10.2174/1389201018666170811150920

GUARANÁ H.C. Influência do SNP rs9939609 do gene Fat Mass and Obesity-Associated (FTO) na fome, saciedade e leptinemia de mulheres obesas (Doctoral dissertation, Universidade Federal do Rio de Janeiro).2016.

HALL, B.K. Evolutionary developmental biology. Springer Science & Business Media.2012.

HALL, K.D.; HEYMSFIELD, S.B.; KEMNITZ, J.W.; KLEIN, S.; SCHOELLER, D.A.; SPEAKMAN, J.R. Energy balance and its components: implications for body weight regulation. The American journal of clinical nutrition, 95(4), 989-994.2012. DOI: https://doi.org/10.3945/ajcn.112.036350

HILL, J.O.; WYATT, H.R.; PETERS, J. C. Energy balance and obesity. Circulation, 126(1), 126-132.2012. DOI: https://doi.org/10.1161/CIRCULATIONAHA.111.087213

HOBOLD, E.; DE ARRUDA, M. Prevalência de sobrepeso e obesidade de crianças e adolescentes no Brasil: uma revisão sistemática. Arquivos de Ciências da Saúde da UNIPAR, 18(3).2014. DOI: https://doi.org/10.25110/arqsaude.v18i3.2014.5195

IEBBA, V.; TOTINO, V.; GAGLIARDI, A.; SANTANGELO, F.; CACCIOTTI, F.; TRANCASSINI, M.; SCHIPPA, S. Eubiosis and dysbiosis: the two sides of the microbiota. New Microbiol, 39(1), 1-12.2016.

IRGISDOTTIR, B. E.; THORSDOTTIR, I. Seafood Consumption and Fasting Leptin and Ghrelin in Overweight and Obese. In Fish and Fish Oil in Health and Disease Prevention (pp. 185-191).2016. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-802844-5.00016-6

UMPERTZ, R.; LE, D.S.; TURNBAUGH, P.J.; TRINIDAD, C.; BOGARDUS, C.; GORDON, J.; KRAKOFF, J. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. The American journal of clinical nutrition, 94(1), 58-65.2011. DOI: https://doi.org/10.3945/ajcn.110.010132

KIMURA, I.; OZAWA, K.; INOUE, D.; IMAMURA, T.; KIMURA, K.; MAEDA, T.; TSUJIMOTO, G. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature communications, 4(1), 1-12.2013. DOI: https://doi.org/10.1038/ncomms2852

LAVEBRATT, C.; ALMGREN, M.; EKSTRÖM, T.J. Epigenetic regulation in obesity. International journal of obesity, 36(6), 757-765.2012. DOI: https://doi.org/10.1038/ijo.2011.178

LEVY, M.; KOLODZIEJCZYK, A.A.; THAISS, C.A.; Elinav, E. Dysbiosis and the immune system. Nature Reviews Immunology, 17(4), 219-232.2017 DOI: https://doi.org/10.1038/nri.2017.7

LI, T.; GAO, J.; DU, M.; MAO, X. Bovine α-lactalbumin hydrolysates ameliorate obesity-associated endotoxemia and inflammation in high-fat diet-fed mice through modulation of gut microbiota. Food & function, 10(6), 3368-3378.2019 DOI: https://doi.org/10.1039/C8FO01967C

LIMA, R.C.A.; JÚNIOR, L.C.C.; FERREIRA, L.L.R.; BEZERRA, L.T.L.; BEZERRA, T.T.L.; DA Conceição Lima, B. Principais alterações fisiológicas decorrentes da obesidade: um estudo teórico. SANARE-Revista de Políticas Públicas, 17(2).2018. DOI: https://doi.org/10.36925/sanare.v17i2.1262

LOGAN, I.E.; BOBE, G.; MIRANDA, C.L.; VASQUEZ-PEREZ, S.; CHOI, J.; LOWRY, M. B.; GOMBART, A.F. Germ-free swiss webster mice on a high-fat diet develop obesity, hyperglycemia, and dyslipidemia. Microorganisms, 8(4), 520.2020. DOI: https://doi.org/10.3390/microorganisms8040520

LUO, S.; O’CONNOR, S.G.; BELCHER, B.R.; Page, K.A. Effects of physical activity and sedentary behavior on brain response to high‐calorie food cues in young adults. Obesity, 26(3), 540-546.2018. DOI: https://doi.org/10.1002/oby.22107

MACHADO, F. R. Efeito da inibição da histona deacetilase 3 em um modelo de obesidade em camundongos. Universidade Federal do Pampa, Campus, Uruguaiana. 2018.

MAHER, C.A.; Mire, E.; Harrington, D.M.; Staiano, A.E.; Katzmarzyk, P.T. The independent and combined associations of physical activity and sedentary behavior with obesity in adults: NHANES 2003‐06. Obesity, 21(12), E730-E737.2013. DOI: https://doi.org/10.1002/oby.20430

MALAGUARNERA, M.; VACANTE, M.; ANTIC, T.; GIORDANO, M.; CHISARI, G.; ACQUAVIVA, R.; GALVANO, F. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Digestive diseases and sciences, 57(2), 545-553.2012. DOI: https://doi.org/10.1007/s10620-011-1887-4

MARCELLO, M. A. Estudo molecular da adiponectina, grelina, leptina e resistina: estabelecendo as ligações entre a obesidade e o câncer de tireoide. Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Campinas, SP. . 114 p. 2015.

MARIN, D. Associação dos polimorfismos G2548A e GLN223ARG com parâmetros antropométricos em mulheres saudáveis (Master's thesis). Dissertação (Mestrado) – Curso de Biotecnologia, Universidade do Vale do Taquari - Univates, 2015.

MESSINA, G.; DE LUCA, V.; VIGGIANO, A.; ASCIONE, A.; IANNACCONE, T.; CHIEFFI, S.; MONDA, M. Autonomic nervous system in the control of energy balance and body weight: personal contributions. Neurology research international, 2013. DOI: https://doi.org/10.1155/2013/639280

MIHALACHE, L.; GHERASIM, A.; NIŢĂ, O.; UNGUREANU, M.C.; PĂDUREANU, S.S. GAVRIL, R. S.; ARHIRE, L.I. Effects of ghrelin in energy balance and body weight homeostasis. Hormones, 15(2), 186-196.2016. DOI: https://doi.org/10.14310/horm.2002.1672

MILJKOVIC, D.; DE MIRANDA, S.H.; KASSOUF, A.L.; OLIVEIRA, F.C. Determinants of obesity in Brazil: the effects of trade liberalization and socio-economic variables. Applied Economics, 50(28), 3076-3088.2018. DOI: https://doi.org/10.1080/00036846.2017.1414939

MONTEIRO, M. P.; BATTERHAM, R.L. The importance of the gastrointestinal tract in controlling food intake and regulating energy balance. Gastroenterology, 152(7), 1707-1717.2017. DOI: https://doi.org/10.1053/j.gastro.2017.01.053

MÜLLER, M. J.; ENDERLE, J.; BOSY-WESTPHAL, A. Changes in energy expenditure with weight gain and weight loss in humans. Current obesity reports, 5(4), 413-423.2016. DOI: https://doi.org/10.1007/s13679-016-0237-4

MURPHY, E.F.; COTTER, P.D.; HEALY, S.; MARQUES, T.M.; O'SULLIVAN, O.; FOUHY, F.; SHANAHAN, F. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut, 59(12), 1635-1642.2010. DOI: https://doi.org/10.1136/gut.2010.215665

OLOFSSON, L.E.; UNGER, E.K.; CHEUNG, C.C.; XU, A.W. Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance. Proceedings of the National Academy of Sciences, 110(8), E697-E706.2013. DOI: https://doi.org/10.1073/pnas.1218284110

ORTEGA, F.B.; LAVIE, C.J.; BLAIR, S.N. Obesity and cardiovascular disease. Circulation research, 118(11), 1752-1770.2016. DOI: https://doi.org/10.1161/CIRCRESAHA.115.306883

PAIVA, A.C.T.; COUTO, C.C.D.; MASSON, A.P.D.L.; MONTEIRO, C.A.S.; FREITAS, C.F. Obesidade Infantil: análises antropométricas, bioquímicas, alimentares e estilo de vida. Revista Cuidarte, 9(3), 2387-2399.2018. DOI: https://doi.org/10.15649/cuidarte.v9i3.575

PAREDES-GONZALEZ, X.; KHOR, T.O.; SHU, L.; SAW, C.L.L., KONG, A.N.T. Overview of Obesity, Inflammation, and Cancer. In Inflammation, Oxidative Stress, and Cancer (pp. 42-61). CRC Press.2016.

PAULI, L.S.S. Papel do exercício físico na regulação da proteína rock em hipotálamo de camundongos obesos: efeitos sobre a sinalização da insulina e leptina.2017.

PEARSON, N.; BIDDLE, S.J. Sedentary behavior and dietary intake in children, adolescents, and adults: a systematic review. American journal of preventive medicine, 41(2), 178-188.2011. DOI: https://doi.org/10.1016/j.amepre.2011.05.002

PEREIRA, V.; RODRIGUES, C.; CORTEZ, F. Fatores genéticos, epigenómicos, metagenómicos e cronobiológicos da obesidade. Acta Portuguesa de Nutrição N. º 17, 17, 22-26.2019. DOI: https://doi.org/10.21011/apn.2017.1704

PERPÉTUO, J.P.; WILASCO, M.I.A.; SCHNEIDER, A.C.R. The role of intestinal microbiota inenergetic metabolism: new perspectives in combating obesity. Clinical and Biomedical Research, v. 35, n. 4, p. 196-199, 2015. DOI: https://doi.org/10.4322/2357-9730.60358

PINTO, R.P.; NUNES, A.A.; MELLO, L.M.D. Análise dos fatores associados ao excesso de peso em escolares. Revista Paulista de Pediatria, 34(4), 460-468.2016. DOI: https://doi.org/10.1016/j.rppede.2016.04.005

PRISTA, A. Sedentarismo, urbanização e transição epidemiológica António Prista. Revista Científica da UEM: Série Ciências Biomédicas e Saúde Pública, 1.2012.

PROCACCINI, C.; JIRILLO, E.; MATARESE, G. Leptin as an immunomodulator. Molecular aspects of medicine, 33(1), 35-45.2012. DOI: https://doi.org/10.1016/j.mam.2011.10.012

PULSFORD, R.M.; STAMATAKIS, E.; BRITTON, A.R.; BRUNNER, E.J.; HILLSDON, M.M. Sitting behavior and obesity: evidence from the Whitehall II study. American journal of preventive medicine, 44(2), 132-138.2013. DOI: https://doi.org/10.1016/j.amepre.2012.10.009

RABOT, S.; MEMBREZ, M.; BRUNEAU, A.; GÉRARD, P.; HARACH, T., MOSER, M.; CHOU, C. J. Germ‐free C57BL/6J mice are resistant to high‐fat‐diet‐induced insulin resistance and have altered cholesterol metabolism. The FASEB Journal, 24(12), 4948-4959.2010. DOI: https://doi.org/10.1096/fj.10.164921

RAJOKA, M.S.R.; SHI, J.; MEHWISH, H.M.; ZHU, J.; LI, Q.; SHAO, D.; YANG, H. Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Science and Human Wellness, 6(3), 121-130.2017. DOI: https://doi.org/10.1016/j.fshw.2017.07.003

RAMOS-LOBO, A.M.; DONATO Jr, J. The role of leptin in health and disease. Temperature, 4(3), 258-291.2017. DOI: https://doi.org/10.1080/23328940.2017.1327003

RECH, D.C.; BORFE, L.; Emmanouilidis, A.; Garcia, E.L.; Krug, S.B.F. As políticas públicas e o enfrentamento da obesidade no Brasil: uma revisão reflexiva. Revista de Epidemiologia e Controle de Infecção, 1(1), 192-202.2016. DOI: https://doi.org/10.17058/reci.v1i1.7974

ROMIEU, I.; DOSSUS, L.; BARQUERA, S.; BLOTTIÈRE, H.M.; FRANKS, P.W.; GUNTER, M.; WILLETT, W.C. Energy balance and obesity: what are the main drivers? Cancer Causes & Control, 28(3), 247-258.2017. DOI: https://doi.org/10.1007/s10552-017-0869-z

RONVEAUX, C.C.; TOMÉ, D.; RAYBOULD, H.E. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling. The Journal of nutrition, 145(4), 672-680.2015. DOI: https://doi.org/10.3945/jn.114.206029

ROSA, C.P.; BRANCAGLION, G.A.; MIYAUCHI-TAVARES, T.M.; CORSETTI, P.P.; DE ALMEIDA, L.A. Antibiotic-induced dysbiosis effects on the murine gastrointestinal tract and their systemic repercussions. Life sciences, 207, 480-491.2018. DOI: https://doi.org/10.1016/j.lfs.2018.06.030

ROSENBAUM, M.; KNIGHT, R.; LEIBEL, R.L. The gut microbiota in human energy homeostasis and obesity. Trends in Endocrinology & Metabolism, 26(9), 493-501.2015. DOI: https://doi.org/10.1016/j.tem.2015.07.002

RUBINO, F.; R'BIBO, S.L.; DEL GENIO, F.; MAZUMDAR, M.; MCGRAW, T.E. Metabolic surgery: the role of the gastrointestinal tract in diabetes mellitus. Nature reviews Endocrinology, 6(2), 102-109.2010. DOI: https://doi.org/10.1038/nrendo.2009.268

SALTIEL, A.R. New therapeutic approaches for the treatment of obesity. Science Translational Medicine, 8(323), 323rv2-323rv2. 2016. DOI: https://doi.org/10.1126/scitranslmed.aad1811

SAMBLAS, M.; MILAGRO, F.I.; GOMEZ-ABELLAN, P.; MARTINEZ, J.A.; GARAULET, M. Methylation on the circadian gene BMAL1 is associated with the effects of a weight loss intervention on serum lipid levels. J Biol Rhythms. 31(3):308-17.2016. DOI: https://doi.org/10.1177/0748730416629247

SANTANNA, S.; CAIADO, N.M.; DA SILVA, L. J. Neuromodulação Hipotalâmica: uma proposta terapêutica para obesidade. Revista de Medicina e Saúde de Brasília, 3(2).

2014.

SEGNI, M.D.; PATRONO, E.; PATELLA, L.; PUGLISI-ALLEGRA, S.; VENTURA, R. Animal models of compulsive eating behavior. Nutrients, 6(10), 4591-4609.2014. DOI: https://doi.org/10.3390/nu6104591

SEWAYBRICKER, L.E. Avaliação da disfunção hipotalâmica em crianças e adolescentes com obesidade = Evaluation of hypothalamic dysfunction in obese children and adolescents. 2016. 1 recurso online (87 p.). Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Campinas, SP.

SMITH, C.J.; RYCKMAN, K.K. Epigenetic and developmental influences on the risk of obesity, diabetes, and metabolic syndrome. Diabetes, metabolic syndrome and obesity: targets and therapy, 8, 295.2015. DOI: https://doi.org/10.2147/DMSO.S61296

SOMINSKY, L.; SPENCER, S.J. Eating behavior and stress: a pathway to obesity. Frontiers in psychology, 5, 434.2014. DOI: https://doi.org/10.3389/fpsyg.2014.00434

SUMITHRAN, P.; PROIETTO, J. The defence of body weight: a physiological basis for weight regain after weight loss. Clinical Science, 124(4), 231-241.2013. DOI: https://doi.org/10.1042/CS20120223

TOBI, E.W.; SLAGBOOM, P.E.; VAN DONGEN, J.; KREMER, D.; STEIN, A.D.; PUTTER, H. Prenatal famine and genetic variation are independently and additively associated with DNA methylation at regulatory loci within IGF2/H19.PLoS One. 7(5):e37933.2012. DOI: https://doi.org/10.1371/journal.pone.0037933

VANDEVIJVERE, S.; CHOW, C.C.; HALL, K.D.; UMALI, E.; SWINBURN, B.A. Increased food energy supply as a major driver of the obesity epidemic: a global analysis. Bulletin of the World Health Organization, 93, 446-456.2015. DOI: https://doi.org/10.2471/BLT.14.150565

VITELLIO, P.; CELANO, G.; BONFRATE, L.; GOBBETTI, M.; PORTINCASA, P.; DE ANGELIS, M. Effects of Bifidobacterium longum and Lactobacillus rhamnosus on gut microbiota in patients with lactose intolerance and persisting functional gastrointestinal symptoms: A randomised, double-blind, cross-over study. Nutrients, 11(4), 886. 2019. DOI: https://doi.org/10.3390/nu11040886

WEFERS, J.; VAN MOORSEL, D.; HANSEN, J.; CONNELL, N.J.; HAVEKES, B.; HOEKS, J.; SCHRAUWEN, P. Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle. Proceedings of the National Academy of Sciences, 115(30), 7789-7794.2018. DOI: https://doi.org/10.1073/pnas.1722295115

WEISS, G.A.; HENNET, T. Mechanisms and consequences of intestinal dysbiosis. Cellular and Molecular Life Sciences, 74(16), 2959-2977.2017. DOI: https://doi.org/10.1007/s00018-017-2509-x

WELLS, J.C. An evolutionary perspective on the trans-generational basis of obesity. Annals of human biology, 38(4), 400-409.2011. DOI: https://doi.org/10.3109/03014460.2011.580781

WORLD HEALTH ORGANIZATION. Global status report on road safety. World Health Organization. 2015.

WÜHL, E. Hypertension in childhood obesity. Acta Paediatrica, 108(1), 37-43.2019. DOI: https://doi.org/10.1111/apa.14551

ZIGMAN, J.M.; BOURET, S.G.; ANDREWS, Z.B. Obesity impairs the action of the neuroendocrine ghrelin system. Trends in Endocrinology & Metabolism, 27(1), 54-63. 2016. DOI: https://doi.org/10.1016/j.tem.2015.09.010

ZIMBERG, I.Z.; DE MELO, C.M.; DEL RE, M.; DOS SANTOS, M.V.; CRISPIM, C.A.; LOPES, T.D.V.C.; DE MELLO, M.T. Relação entre apneia obstrutiva do sono e obesidade: uma revisão sobre aspectos endócrinos, metabólicos e nutricionais. RBONE-Revista Brasileira de Obesidade, Nutrição e Emagrecimento, 11(64), 250-260.2017

Downloads

Publicado

04/05/2022

Como Citar

Nascimento, O. V. do, Nascimento, W. M. do ., Melo, C. dos S., & Lima, E. S. (2022). FATORES ASSOCIADOS À OBESIDADE: UMA BREVE REVISÃO NARRATIVA: . RECISATEC - REVISTA CIENTÍFICA SAÚDE E TECNOLOGIA - ISSN 2763-8405, 2(5), e25108. https://doi.org/10.53612/recisatec.v2i5.108