Tumor Electrometabolic Instability Induced by Exogenous Electric Fields and Photobiomodulation: A Biophysical–Theoretical Framework
DOI:
https://doi.org/10.70187/recisatec.v6i1.410Keywords:
Photobiomodulation, Bioelectricity, CancerAbstract
Tumor cells differ from normal cells not only in genetic and biochemical terms but also in their electrical, dielectric, and energetic properties. This article proposes a theoretical framework in which solid tumors are treated as dissipative electrodynamic systems, characterized by high ionic conductivity, an acidic microenvironment, intensive metabolism, and functionally unstable cellular circuitry. It is argued that the combined application of low-voltage, high-frequency exogenous transdermal electric fields, together with near-infrared photobiomodulation (~850 nm), may act as a physical perturbation capable of increasing the tumor’s energetic cost, inducing oxidative stress, and compromising the electrome tabolic stability of the tumor system. The work does not propose therapeutic protocols but instead organizes existing physical and biological concepts into a coherent, falsifiable model oriented toward future investigation.
Downloads
References
Levin M. Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell. 2021;184(8):1971–89. DOI: https://doi.org/10.1016/j.cell.2021.02.034
Blackiston DJ, et al. Bioelectric controls of cell proliferation. J Physiol. 2009;587(Pt 15):3579–86.
Yang M, Brackenbury WJ. Membrane potential and cancer progression. Front Physiol. 2013;4:185. DOI: https://doi.org/10.3389/fphys.2013.00185
Binggeli R, Weinstein RC. Membrane potentials and sodium channels in cancer cells. J Theor Biol. 1986;123(4):377–401. DOI: https://doi.org/10.1016/S0022-5193(86)80209-0
Pethig R. Dielectric properties of biological materials. IEEE Trans Electr Insul. 1984;19(5):453–74. DOI: https://doi.org/10.1109/TEI.1984.298769
Foster KR, Schwan HP. Dielectric properties of tissues. Crit Rev Biomed Eng. 1989;17(1):25–104.
Cole KS, Cole RH. Dispersion and absorption in dielectrics. J Chem Phys. 1941;9:341–51. DOI: https://doi.org/10.1063/1.1750906
Grimnes S, Martinsen ØG. Bioimpedance and bioelectricity basics. 3rd ed. London: Academic Press; 2015. DOI: https://doi.org/10.1016/B978-0-12-411470-8.00011-8
Vander Heiden MG, DeBerardinis RJ. Metabolism and cancer. Cell. 2017;168(4):657–69. DOI: https://doi.org/10.1016/j.cell.2016.12.039
Warburg O. On the origin of cancer cells. Science. 1956;123:309–14. DOI: https://doi.org/10.1126/science.123.3191.309
Nicholls DG, Ferguson SJ. Bioenergetics 4. London: Academic Press; 2013.
Funk RHW. Endogenous electric fields. Front Physiol. 2015;6:143. DOI: https://doi.org/10.3389/fphys.2015.00143
McCaig CD, et al. Controlling cell behavior electrically. Physiol Rev. 2005;85(3):943–78. DOI: https://doi.org/10.1152/physrev.00020.2004
Robinson KR, Messerli MA. Electric embryos. BioEssays. 2003;25(8):733–41. DOI: https://doi.org/10.1002/bies.10307
Castells-Garcia A, et al. Tumor treating fields. Nat Rev Cancer. 2023;23:180–95. DOI: https://doi.org/10.1038/s41568-023-00590-6
Kirson ED, et al. Disruption of cancer cell division by alternating electric fields. Cancer Res. 2004;64:3288–95. DOI: https://doi.org/10.1158/0008-5472.CAN-04-0083
Giladi M, et al. Alternating fields and mitosis. PNAS. 2015;112:E189–98.
Kotnik T, et al. Electroporation-based applications. Trends Biotechnol. 2019;37(3):293–309.
Schoenbach KH, et al. Bioelectric effects of intense nanosecond pulses. Bioelectromagnetics. 2007;28:509–21.
Weaver JC, Chizmadzhev YA. Theory of electroporation. Bioelectrochem Bioenerg. 1996;41:135–60. DOI: https://doi.org/10.1016/S0302-4598(96)05062-3
Hamblin MR. Photobiomodulation mechanisms. J Biophotonics. 2016;9:1122–4. DOI: https://doi.org/10.1002/jbio.201670113
Karu T. Mitochondrial mechanisms of PBM. Photomed Laser Surg. 2008;26(2):109–16.
Poyton RO, Ball KA. NO and mitochondrial respiration. Physiol Rev. 2011;91:335–410.
Hamanaka RB, Chandel NS. Mitochondrial ROS. J Cell Biol. 2010;189(5):775–85.
Gillies RJ, et al. Tumor acidity. Cancer Metastasis Rev. 2004;23:203–17.
Swietach P, et al. pH regulation in cancer. Nat Rev Cancer. 2014;14:611–25. DOI: https://doi.org/10.1038/nrc3793
Bagherieh-Najjar MB, et al. Electrical conductivity of tumors. Phys Med Biol. 2019;64:095006. DOI: https://doi.org/10.1088/1361-6560/ab15ed
Gabriel C, et al. Dielectric properties of tissues. Phys Med Biol. 1996;41:2251–69. DOI: https://doi.org/10.1088/0031-9155/41/11/002
Kotnik T, Miklavčič D. Electric fields in tissues. Eur Biophys J. 2000;29:79–89. DOI: https://doi.org/10.1016/S0006-3495(00)76325-9
Hecht F, et al. Bioelectromagnetic fields and cancer. Bioelectromagnetics. 2016;37:245–58.
Albrecht-Buehler G. The electromagnetic field of the cell. Sci Am. 1992;266(6):84–91. DOI: https://doi.org/10.1038/scientificamerican0492-84
Adey WR. Tissue interactions with EM fields. Physiol Rev. 1981;61:435–514. DOI: https://doi.org/10.1152/physrev.1981.61.2.435
Fröhlich H. Coherent excitations in biology. Int J Quantum Chem. 1968;2:641–9. DOI: https://doi.org/10.1002/qua.560020505
Persinger MA. Electromagnetic correlates of consciousness. Neurosci Biobehav Rev. 2015;48:714–23.
De la Fuente IM, et al. Nonlinear dynamics in cancer. BioSystems. 2013;111:112–22.
Davies PCW, Demetrius L. Cancer as entropy problem. Cell Cycle. 2014;13:123–30.
Soto AM, Sonnenschein C. Systems
Sarreshtehdari A, et al. Electrical Conductivity Measurement in Human Liver Tissue: Assessment on Normal vs. Tumor Tissue and under In Vivo vs. Ex Vivo Conditions. Biosensors (Basel). 2024;14(8):382. DOI: https://doi.org/10.3390/bios14080382
Khagi S, et al. Recent advances in Tumor Treating Fields (TTFields) therapy for glioblastoma. The Oncologist. 2025;30(2):oyae227. DOI: https://doi.org/10.1093/oncolo/oyae227
Babiker HM, et al. Tumor Treating Fields With Gemcitabine and Nab-Paclitaxel for Locally Advanced Pancreatic Adenocarcinoma: Randomized, Open-Label, Pivotal Phase III PANOVA-3 Study. J Clin Oncol. 2025;43(21):2350-2360. DOI: https://doi.org/10.1200/JCO-25-00746
Aviña AE, et al. Safe Mitochondrial Activation Through Photobiomodulation: Distinct Red and Near-Infrared Responses in Normal and Malignant Cells. J Biophotonics. 2025;e202500555. DOI: https://doi.org/10.1002/jbio.202500555
Ferreira ACS, et al. Photobiomodulation by infrared radiation on hallmarks of cancer. Lasers Med Sci. 2025;40(1):385. DOI: https://doi.org/10.1007/s10103-025-04625-2
Downloads
Published
License
Copyright (c) 2026 RECISATEC SCIENTIFIC JOURNAL - ISSN 2763-8405

This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECISATEC, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECISATEC apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.





































