Tumor Electrometabolic Instability Induced by Exogenous Electric Fields and Photobiomodulation: A Biophysical–Theoretical Framework

Authors

DOI:

https://doi.org/10.70187/recisatec.v6i1.410

Keywords:

Photobiomodulation, Bioelectricity, Cancer

Abstract

Tumor cells differ from normal cells not only in genetic and biochemical terms but also in their electrical, dielectric, and energetic properties. This article proposes a theoretical framework in which solid tumors are treated as dissipative electrodynamic systems, characterized by high ionic conductivity, an acidic microenvironment, intensive metabolism, and functionally unstable cellular circuitry. It is argued that the combined application of low-voltage, high-frequency exogenous transdermal electric fields, together with near-infrared photobiomodulation (~850 nm), may act as a physical perturbation capable of increasing the tumor’s energetic cost, inducing oxidative stress, and compromising the electrome tabolic stability of the tumor system. The work does not propose therapeutic protocols but instead organizes existing physical and biological concepts into a coherent, falsifiable model oriented toward future investigation. 

Downloads

Download data is not yet available.

Author Biography

  • Geraldo Medeiros Junior

    Biomedical professional qualified in Clinical Pathology and Hematology, specialist in Biophotonic Medicine. Interdisciplinary training focused on scientific research and technological development in the field of health.

References

Levin M. Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell. 2021;184(8):1971–89. DOI: https://doi.org/10.1016/j.cell.2021.02.034

Blackiston DJ, et al. Bioelectric controls of cell proliferation. J Physiol. 2009;587(Pt 15):3579–86.

Yang M, Brackenbury WJ. Membrane potential and cancer progression. Front Physiol. 2013;4:185. DOI: https://doi.org/10.3389/fphys.2013.00185

Binggeli R, Weinstein RC. Membrane potentials and sodium channels in cancer cells. J Theor Biol. 1986;123(4):377–401. DOI: https://doi.org/10.1016/S0022-5193(86)80209-0

Pethig R. Dielectric properties of biological materials. IEEE Trans Electr Insul. 1984;19(5):453–74. DOI: https://doi.org/10.1109/TEI.1984.298769

Foster KR, Schwan HP. Dielectric properties of tissues. Crit Rev Biomed Eng. 1989;17(1):25–104.

Cole KS, Cole RH. Dispersion and absorption in dielectrics. J Chem Phys. 1941;9:341–51. DOI: https://doi.org/10.1063/1.1750906

Grimnes S, Martinsen ØG. Bioimpedance and bioelectricity basics. 3rd ed. London: Academic Press; 2015. DOI: https://doi.org/10.1016/B978-0-12-411470-8.00011-8

Vander Heiden MG, DeBerardinis RJ. Metabolism and cancer. Cell. 2017;168(4):657–69. DOI: https://doi.org/10.1016/j.cell.2016.12.039

Warburg O. On the origin of cancer cells. Science. 1956;123:309–14. DOI: https://doi.org/10.1126/science.123.3191.309

Nicholls DG, Ferguson SJ. Bioenergetics 4. London: Academic Press; 2013.

Funk RHW. Endogenous electric fields. Front Physiol. 2015;6:143. DOI: https://doi.org/10.3389/fphys.2015.00143

McCaig CD, et al. Controlling cell behavior electrically. Physiol Rev. 2005;85(3):943–78. DOI: https://doi.org/10.1152/physrev.00020.2004

Robinson KR, Messerli MA. Electric embryos. BioEssays. 2003;25(8):733–41. DOI: https://doi.org/10.1002/bies.10307

Castells-Garcia A, et al. Tumor treating fields. Nat Rev Cancer. 2023;23:180–95. DOI: https://doi.org/10.1038/s41568-023-00590-6

Kirson ED, et al. Disruption of cancer cell division by alternating electric fields. Cancer Res. 2004;64:3288–95. DOI: https://doi.org/10.1158/0008-5472.CAN-04-0083

Giladi M, et al. Alternating fields and mitosis. PNAS. 2015;112:E189–98.

Kotnik T, et al. Electroporation-based applications. Trends Biotechnol. 2019;37(3):293–309.

Schoenbach KH, et al. Bioelectric effects of intense nanosecond pulses. Bioelectromagnetics. 2007;28:509–21.

Weaver JC, Chizmadzhev YA. Theory of electroporation. Bioelectrochem Bioenerg. 1996;41:135–60. DOI: https://doi.org/10.1016/S0302-4598(96)05062-3

Hamblin MR. Photobiomodulation mechanisms. J Biophotonics. 2016;9:1122–4. DOI: https://doi.org/10.1002/jbio.201670113

Karu T. Mitochondrial mechanisms of PBM. Photomed Laser Surg. 2008;26(2):109–16.

Poyton RO, Ball KA. NO and mitochondrial respiration. Physiol Rev. 2011;91:335–410.

Hamanaka RB, Chandel NS. Mitochondrial ROS. J Cell Biol. 2010;189(5):775–85.

Gillies RJ, et al. Tumor acidity. Cancer Metastasis Rev. 2004;23:203–17.

Swietach P, et al. pH regulation in cancer. Nat Rev Cancer. 2014;14:611–25. DOI: https://doi.org/10.1038/nrc3793

Bagherieh-Najjar MB, et al. Electrical conductivity of tumors. Phys Med Biol. 2019;64:095006. DOI: https://doi.org/10.1088/1361-6560/ab15ed

Gabriel C, et al. Dielectric properties of tissues. Phys Med Biol. 1996;41:2251–69. DOI: https://doi.org/10.1088/0031-9155/41/11/002

Kotnik T, Miklavčič D. Electric fields in tissues. Eur Biophys J. 2000;29:79–89. DOI: https://doi.org/10.1016/S0006-3495(00)76325-9

Hecht F, et al. Bioelectromagnetic fields and cancer. Bioelectromagnetics. 2016;37:245–58.

Albrecht-Buehler G. The electromagnetic field of the cell. Sci Am. 1992;266(6):84–91. DOI: https://doi.org/10.1038/scientificamerican0492-84

Adey WR. Tissue interactions with EM fields. Physiol Rev. 1981;61:435–514. DOI: https://doi.org/10.1152/physrev.1981.61.2.435

Fröhlich H. Coherent excitations in biology. Int J Quantum Chem. 1968;2:641–9. DOI: https://doi.org/10.1002/qua.560020505

Persinger MA. Electromagnetic correlates of consciousness. Neurosci Biobehav Rev. 2015;48:714–23.

De la Fuente IM, et al. Nonlinear dynamics in cancer. BioSystems. 2013;111:112–22.

Davies PCW, Demetrius L. Cancer as entropy problem. Cell Cycle. 2014;13:123–30.

Soto AM, Sonnenschein C. Systems

Sarreshtehdari A, et al. Electrical Conductivity Measurement in Human Liver Tissue: Assessment on Normal vs. Tumor Tissue and under In Vivo vs. Ex Vivo Conditions. Biosensors (Basel). 2024;14(8):382. DOI: https://doi.org/10.3390/bios14080382

Khagi S, et al. Recent advances in Tumor Treating Fields (TTFields) therapy for glioblastoma. The Oncologist. 2025;30(2):oyae227. DOI: https://doi.org/10.1093/oncolo/oyae227

Babiker HM, et al. Tumor Treating Fields With Gemcitabine and Nab-Paclitaxel for Locally Advanced Pancreatic Adenocarcinoma: Randomized, Open-Label, Pivotal Phase III PANOVA-3 Study. J Clin Oncol. 2025;43(21):2350-2360. DOI: https://doi.org/10.1200/JCO-25-00746

Aviña AE, et al. Safe Mitochondrial Activation Through Photobiomodulation: Distinct Red and Near-Infrared Responses in Normal and Malignant Cells. J Biophotonics. 2025;e202500555. DOI: https://doi.org/10.1002/jbio.202500555

Ferreira ACS, et al. Photobiomodulation by infrared radiation on hallmarks of cancer. Lasers Med Sci. 2025;40(1):385. DOI: https://doi.org/10.1007/s10103-025-04625-2

Published

2026-02-14

How to Cite

Medeiros Junior, G. (2026). Tumor Electrometabolic Instability Induced by Exogenous Electric Fields and Photobiomodulation: A Biophysical–Theoretical Framework. RECISATEC SCIENTIFIC JOURNAL - ISSN 2763-8405, 6(1), e61410. https://doi.org/10.70187/recisatec.v6i1.410

Similar Articles

1-10 of 15

You may also start an advanced similarity search for this article.