REVIEW OF THE ROLE OF ARTIFICIAL INTELLIGENCE IN ASSISTED REPRODUCTION TECHNIQUES

Authors

DOI:

https://doi.org/10.70187/recisatec.v5i3.384

Keywords:

, Assisted reproduction techniques, Ovarian stimulation, Oocytes, Semen

Abstract

Artificial intelligence (AI)-based methods are ideal for manipulating, processing, and analyzing large volumes of data generated throughout the stages of Assisted Reproductive Techniques (ART). These data can be of various types, including numbers, texts, and images. This can occur during the assessment of the patient's reproductive potential with the aim of individualizing protocols and optimizing the chances of pregnancy. They have emerged as objective, quantifiable, and non-invasive tools for rapid and accurate analysis, increasing the chances of success in treatments. The objective of this review is to comprehensively examine the literature and explore in chronological order the latest advances in AI, specifically in the ART stages, including controlled ovarian stimulation and oocyte and semen analysis. We summarized 19 articles published between 2021 and 2025, extracted from two electronic databases, using the following terms: “in vitro fertilization”, “ovarian stimulation”, “trigger”, “oocytes”, “sperm”, “Artificial Intelligence”, “Deep Learning”, and “Machine Learning”. The review, in addition to helping researchers gain a more comprehensive understanding of the status and future trends of AI work in TRA, will enable interdisciplinary researchers to propose combined techniques to conduct individualized approaches that reduce socioeconomic and possibly environmental impacts.

Downloads

Download data is not yet available.

Author Biographies

Oberdan Costa

Universidade Fernando Pessoa, Porto-Portugal.

Mariana Santos Costa

Biomédica especialista em Reprodução Humana Assistida pelo Instituto Sapientiae -SP, Mestra em Biologia Celular e Molecular pela Universidade Estadual Paulista Júlio de Mesquita Filho UNESP (Campus Rio Claro). Bolsista do programa de iniciação científica da Universidade Ceuma em Microbiologia Ambiental e Ecotoxicologia. Mestrado na área de biologia celular e molecular. Embriologista na área de andrologia e administrativo do laboratório. Doutoranda no Laboratório de Inovação em Reprodução Assistida da Universidade Federal do Rio de Janeiro. 

Marcel Frajblat

Professor and scientist at the Federal University of Rio de Janeiro in the fields of animal and human reproductive biotechnology. He coordinates the Laboratory of Innovation in Assisted Reproduction (LIRA), responsible for performing techniques such as in vitro fertilization, cryopreservation of gametes and embryos, production of genetically modified animal models, and quality control of materials used in human assisted reproduction. LIRA aims to be a laboratory for the development of innovative products for human and animal assisted reproduction. He is also responsible for the Coordination of Activities with Biological Models at UFRJ (CAMBE). General Secretary of the International Council of Laboratory Animal Science (ICLAS), responsible for connecting laboratory animal science globally. Second Secretary of the Federation of Experimental Biology Societies (FeSBE), responsible for bringing together scientists involved in biomedical research in Brazil. Editor-in-Chief of the scientific journal Biological Models Research and Technology (BMRT)

References

Organização Mundial Da Saúde. Infertily prevalence estimates: 1990-1921 [Internet]. Geneva: WHO; 2023. [cited 2025 Feb 15]. Available from: https://www.who.int/publications/i/item/978920068315.

Conselho Federal De Medicina (CFM). Resolução CFM nº 2.294, de 15 de junho de 2021. Adota as normas éticas para a utilização das técnicas de reprodução assistida – sempre em defesa do aperfeiçoamento das práticas e da observância aos princípios éticos e bioéticos que ajudam a trazer maior segurança e eficácia a tratamentos e procedimentos médicos, tornando-se o dispositivo deontológico a ser seguido pelos médicos brasileiros e revogando a Resolução CFM nº 2.168, publicada no D.O.U. de 10 de novembro de 2017, Seção I, p. 73. Diário Oficial da União [Internet]. Brasília, p. 60, 15 jun 2021. [cited 2025 Feb 16]. Available from: https://bit.ly/3XHKyf1.

Chow DJX, Wijesinghe P, Dholakia K, Dunning KR. Does artificial intelligence have a role in the IVF clinic? Reproduction and Fertility [Internet]. 2021 Sep 15;2(3):C29-34. [cited 2025 Feb 16]. Available from: https://raf.bioscientifica.com/view/journals/raf/2/3/RAF-21-0043.xml?main%20body=pdf-62708. doi: 10.1530/RAF-21-0043. PMID: 35118395; PMCID: PMC8801019. DOI: https://doi.org/10.1530/RAF-21-0043

Zaninovic N, Rosenwaks Z. Artificial intelligence in human in vitro fertilization and embryology. Fertility and Sterility [Internet]. 2020 Nov 1;114(5):914-20. doi: 10.1016/j.fertnstert.2020.09.157. PMID: 33160513. DOI: https://doi.org/10.1016/j.fertnstert.2020.09.157

Chen H, Li J, Cai S, Zeng S, Yin C, Kuang W, et al. Impact of body mass index (BMI) on the success rate of fresh embryo transfer in women undergoing first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment. International Journal of Obesity [Internet]. 2021 Oct 9;46(1):202-10. [cited 2025 Feb 16]. Available from: https://www.nature.com/articles/s41366-021-00978-0. doi: 10.1038/s41366-021-00978-0. DOI: https://doi.org/10.1038/s41366-021-00978-0

Radin Dabbagh Rezaeiyeh, Arian Mehrara, Ali M, Fallahi J, Sedighe Forouhari. Impact of Various Parameters as Predictors of The Success Rate of In Vitro Fertilization. DOAJ (DOAJ: Directory of Open Access Journals). 2022 Apr 1;16(2):76-84. [cited 2025 Feb 16]. Available from: https://doi.org/10.22074/ijfs.2021.531672.1134.

Fanton M, Nutting V, Solano F, Maeder-York P, Hariton E, Barash O, et al. An interpretable machine learning model for predicting the optimal day of trigger during ovarian stimulation. Fertility and Sterility [Internet]. 2022 Jul 1;118(1):101-8. [cited 2025 Feb 16]. Available from: https://www.fertstert.org/article/S0015-0282(22)00244-8/fulltext. doi:10.1016/j.fertnstert.2022.04.003.

Datta AK. Maheshwari A, Felix N, Campbell S, Nargund G. Mild versus conventional ovarian stimulation for IVF in poor, normal and hyper-responders: a systematic review and meta-analysis. Hum Reprod Update [Internet]. 2021 Feb 19;27(2):229-253. [cited 2025 Feb 16]. Available from: https://academic.oup.com/humupd/article/27/2/229/5955862. doi: 10.1093/humupd/dmaa035. PMID: 33146690; PMCID: PMC7902993. DOI: https://doi.org/10.1093/humupd/dmaa035

Bosch E, Labarta E, Kolibianakis E, Rosen M, Meldrum D. Regimen of ovarian stimulation affects oocyte and therefore embryo quality. Fertility and Sterility. 2016 Mar;105(3):560-70. [cited 2025 Feb 20]. Available from: https://www.fertstert.org/article/S0015-0282(16)00063-7/fulltext. doi: 10.1016/j.fertnstert.2016.01.022. PMID: 26826273. DOI: https://doi.org/10.1016/j.fertnstert.2016.01.022

Rawan AlSaad, Alaa Abd-alrazaq, Fadi Choucair, Ahmed A, Aziz S, Sheikh J. Harnessing Artificial Intelligence to Predict Ovarian Stimulation Outcomes in In Vitro Fertilization: Scoping Review. Journal of Medical Internet Research [Internet]. 2024 Jul 5;26:e53396-6. [cited 2025 Feb 20]. Available from: https://www.jmir.org/2024/1/e53396. doi: 10.2196/53396. DOI: https://doi.org/10.2196/53396

Choo CW, Kim JH. A prospective cohort study to develop a treatment algorithm for controlled ovarian stimulation to select a starting dose of recombinant follicle stimulating hormone based on patient characteristics and ovarian response (fame study). Fertil Steril [Internet]. 2021 116(3):e196-e197, 2021. [cited 2025 Feb 20]. Available from: https://www.fertstert.org/article/S0015-0282(21)01137-7/fulltext. doi: 10.1016/j.fertnstert.2021.07.538. DOI: https://doi.org/10.1016/j.fertnstert.2021.07.538

Targosz A, Przystałka P, Wiaderkiewicz R, Mrugacz G. Semantic segmentation of human oocyte images using deep neural networks. BioMedical Engineering OnLine [Internet]. 2021 Apr 23;20(1). [cited 2025 Feb 20]. Available from: https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-021-00864-w. doi: 10.1186/s12938-021-00864-w PMID: 33892725; PMCID: PMC8066497. DOI: https://doi.org/10.1186/s12938-021-00864-w

Aykaç A, Kaya C, Çelik Ö., Aydin ME, Sungur M. A predição da qualidade do sêmen com base em comportamentos de estilo de vida por modelos baseados em aprendizado de máquina. Reproductive Biology and Endocrinology. [Internet]. 2024 2024 Aug 29, 22(1). [cited 2025 Feb 20]. Available from: https://rbej.biomedcentral.com/articles/10.1186/s12958-024-01268-w. doi: 10.1186/s12958-024-01268-w. DOI: https://doi.org/10.1186/s12958-024-01268-w

Zhao M, Xu M, Li H, Alqawasmeh O, Chung JPW, Li TC, et al. Application of convolutional neural network on early human embryo segmentation during in vitro fertilization. Journal of Cellular and Molecular Medicine [Internet]. 2021 Mar 1;25(5):2633-44. [cited 2025 Feb 20]. Available from: https://pubmed.ncbi.nlm.nih.gov/33486848/. doi: 10.1111/jcmm.16288. Epub 2021 Jan 24. PMID: 33486848; PMCID: PMC7933952. DOI: https://doi.org/10.1111/jcmm.16288

Asada Y, Shinohara T, Yonezawa S, Kinugawa T, Asano E, Kojima M, et al. Development of an AI‐based support system for controlled ovarian stimulation. Reproductive Medicine and Biology [Internet]. 2024 Jan;23(1). [cited 2025 Feb 20]. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11366684/. doi: 10.1002/rmb2.12603. PMID: 39224211; PMCID: PMC11366684. DOI: https://doi.org/10.1002/rmb2.12603

Fanton M, Nutting V, Solano F, Maeder-York P, Hariton E, Barash O, Weckstein L, Sakkas D, Copperman AB, Loewke K. An interpretable machine learning model to predict optimal trigger day during ovarian stimulation. Fertil Steril [Internet]. 2022;118(1):101-108. [cited 2025 Feb 20]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0015-0282(22)00244-8.S0015-0282(22)00244-8. doi: 10.1016/j.fertnstert.2022.04.003. DOI: https://doi.org/10.1016/j.fertnstert.2022.04.003

Ferrand T, Boulant J, He C, Jérôme Chambost, Jacques C, Pena CA, et al. Predicting the number of oocytes retrieved from controlled ovarian hyperstimulation with machine learning. Human Reproduction [Internet]. 2023 Aug 15;38(10):1918-26. [cited 2025 Feb 20]. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10546073/. doi: 10.1093/humrep/dead163. PMID: 37581894; PMCID: PMC10546073. DOI: https://doi.org/10.1093/humrep/dead163

Hariton E, Chi EA, Chi G, Morris JR, Braatz J, Rajpurkar P, et al. A machine learning algorithm can optimize the day of trigger to improve in vitro fertilization outcomes. Fertility and Sterility [Internet]. 2021 Nov;116(5):1227-35. [cited 2025 Feb 20]. Available from: https://pubmed.ncbi.nlm.nih.gov/34256948/. doi: 10.1016/j.fertnstert.2021.06.018. DOI: https://doi.org/10.1016/j.fertnstert.2021.06.018

Houri O, Gil Y, Danieli-Gruber S, Shufaro Y, Sapir O, Hochberg A, et al. Prediction of oocyte maturation rate in the GnRH antagonist flexible IVF protocol using a novel machine learning algorithm - A retrospective study. European journal of obstetrics, gynecology, and reproductive biology [Internet]. 2023 May;284:100-4. [cited 2025 Feb 20]. Available from: https://pubmed.ncbi.nlm.nih.gov/36965213/. doi: 10.1016/j.ejogrb.2023.03.022. Epub 2023 Mar 21. PMID: 36965213. DOI: https://doi.org/10.1016/j.ejogrb.2023.03.022

Hua L, Zhe Y, Jing Y, Shen Fujin, Jiao C, Liu L. Prediction model of gonadotropin starting dose and its clinical application in controlled ovarian stimulation. BMC Pregnancy and Childbirth [Internet]. 2022 Nov 4;22(1). [cited 2025 Feb 20]. Available from: https://pubmed.ncbi.nlm.nih.gov/36333671/. doi: 10.1186/s12884-022-05152-6. PMID: 36333671; PMCID: PMC9635211. DOI: https://doi.org/10.1186/s12884-022-05152-6

Liang X, Liang J, Zeng F, Yang L, Li Y, Cai K, et al. Evaluation of oocyte maturity using artificial intelligence quantification of follicle volume biomarker by three-dimensional ultrasound. Reproductive Biomedicine Online [Internet]. 2022 Dec 1;45(6):1197-206. [cited 2025 Feb 20]. Available from: https://pubmed.ncbi.nlm.nih.gov/36075848/. doi: 10.1016/j.rbmo.2022.07.012. Epub 2022 Jul 28. PMID: 36075848. DOI: https://doi.org/10.1016/j.rbmo.2022.07.012

Liu L, Shen F, Liang H, Yang Z, Yang J, Chen J. Machine Learning-Based Modeling of Ovarian Response and the Quantitative Evaluation of Comprehensive Impact Features. Diagnostics [Internet]. 2022 Feb 14;12(2):492. [cited 2025 Feb 21]. Available from: https://pubmed.ncbi.nlm.nih.gov/35204580/. doi: 10.3390/diagnostics12020492. PMID: 35204580; PMCID: PMC8871024. DOI: https://doi.org/10.3390/diagnostics12020492

Wei J, Xiong D, Zhang Y, Zeng J, Liu W, Ye F. Predicting ovarian responses to the controlled ovarian hyperstimulation in elderly infertile women using clinical measurements and random forest regression. European journal of obstetrics, gynecology, and reproductive biology [Internet]. 2023 Sep;288:153-9. [cited 2025 Feb 21]. Available from: https://pubmed.ncbi.nlm.nih.gov/37544248/. doi: 10.1016/j.ejogrb.2023.07.012. Epub 2023 Jul 24. PMID: 37544248. DOI: https://doi.org/10.1016/j.ejogrb.2023.07.012

Yan S, Jin W, Ding J, Yin T, Zhang Y, Yang J. Machine-intelligence for developing a potent signature to predict ovarian response to tailor assisted reproduction technology. Aging [Internet]. 2021;13(13):17137–54. [cited 2025 Feb 21]. Available from: https://pubmed.ncbi.nlm.nih.gov/33999860/. doi: 10.18632/aging.203032. Epub 2021 May 17. PMID: 33999860; PMCID: PMC831246. DOI: https://doi.org/10.18632/aging.203032

Krystian Zieliński, Pukszta S, Mickiewicz M, Kotlarz M, Piotr Wygocki, Marcin Zieleń, et al. Personalized prediction of the secondary oocytes number after ovarian stimulation: A machine learning model based on clinical and genetic data. PLoS Computational Biology [Internet]. 2023 Apr 27;19(4):e1011020–0. [cited 2025 Feb 20]. Available from: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011020. doi: 10.1371/journal.pcbi.1011020. PMID: 37104276; PMCID: PMC10138216. DOI: https://doi.org/10.1371/journal.pcbi.1011020

Fjeldstad J, Qi W, Siddique N, Mercuri N, Nayot D, Krivoi A. Segmentation of mature human oocytes provides interpretable and improved blastocyst outcome predictions by a machine learning model. Scientific Reports [Internet]. 2024 May 8;14(1):10569. [cited 2025 Feb 20]. Available from: https://www.nature.com/articles/s41598-024-60901-1#Abs1. doi: 10.1038/s41598-024-60901-1. PMID: 38719918; PMCID: PMC11078996. DOI: https://doi.org/10.1038/s41598-024-60901-1

Baručić D, Kybic J, Teplá O, Topurko Z, Kratochvílová I. Automatic evaluation of human oocyte developmental potential from microscopy images. In: Proceedings of the 17th international symposium on medical information processing and analysis. 2021. 12088:403-9. DOI: https://doi.org/10.1117/12.2604010

Targosz A, Myszor D, Mrugacz G. Human oocytes image classification method based on deep neural networks. BioMedical Engineering OnLine [Internet]. 2023 Sep 21;22:92. [cited 2025 Feb 20]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512614/. doi: 10.1186/s12938-023-01153-4. PMID: 37735409; PMCID: PMC10512614. DOI: https://doi.org/10.1186/s12938-023-01153-4

Yang H, Ma M, Chen X, Chen G, Shen Y, Zhao L, et al. Multidimensional Morphological Analysis of Live Sperm Based on Multiple-target Tracking. Computational and Structural Biotechnology Journal [Internet]. 2024 Mar 1: 176-184. ISSN 2001 0370. [cited 2025 Feb 20]. Available from: https://www.sciencedirect.com/science/article/pii/S2001037024000497. doi: 10.1016/j.csbj.2024.02.025. DOI: https://doi.org/10.1016/j.csbj.2024.02.025

Mehrjerd A, Dehghani T, Jajroudi M, Eslami S, Rezaei H, Ghaebi NK. Ensemble machine learning models for sperm quality evaluation concerning success rate of clinical pregnancy in assisted reproductive techniques. Scientific Reports [Internet]. 2024 Oct 16;14(1). [cited 2025 Feb 21]. Available from: https://pubmed.ncbi.nlm.nih.gov/39414869/. doi: 10.1038/s41598-024-73326-7. PMID: 39414869; PMCID: PMC11484743. DOI: https://doi.org/10.1038/s41598-024-73326-7

Lutfullah Sagir, Kaba E, Merve Huner Yigit, Filiz Tasci, Uzun H. Predicting Semen Analysis Parameters from Testicular Ultrasonography Images Using Deep Learning Algorithms: An Innovative Approach to Male Infertility Diagnosis. Journal of Clinical Medicine [Internet]. 2025 Jan 15;14(2):516-6. [cited 2025 Feb 21]. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11766078/. doi: 10.3390/jcm14020516. DOI: https://doi.org/10.3390/jcm14020516

Wang J, Jin Y, Jiang A, Chen W, Shan G, Gu Y, et al. Testing the generalizability and effectiveness of deep learning models among clinics: sperm detection as a pilot study. Reproductive Biology and Endocrinology [Internet]. 2024 May 22;22(1). [cited 2025 Feb 20]. Available from: https://rbej.biomedcentral.com/articles/10.1186/s12958-024-01232-8. doi: 10.1186/s12958-024-01232-8. PMID: 38778327; PMCID: PMC11110326. DOI: https://doi.org/10.1186/s12958-024-01232-8

Published

2025-05-26

How to Cite

Costa, O., Santos Costa, M., & Frajblat, M. (2025). REVIEW OF THE ROLE OF ARTIFICIAL INTELLIGENCE IN ASSISTED REPRODUCTION TECHNIQUES. RECISATEC SCIENTIFIC JOURNAL - ISSN 2763-8405, 5(3), e53384. https://doi.org/10.70187/recisatec.v5i3.384