ANÁLISIS DE LA CORRELACIÓN DE CITOQUINAS INFLAMATORIAS Y DIC EN PACIENTES POLITRAUMADOS

Autores/as

  • Eduardo de Sá Barbosa
  • Kerolayne de Melo Nogueira
  • Luan Kelves Miranda de Souza

DOI:

https://doi.org/10.53612/recisatec.v2i6.148

Palabras clave:

Trauma múltiple, citocinas, Coagulación intravascular diseminada

Resumen

La coagulación intravascular diseminada (CID) se caracteriza por la activación in vivo del sistema de coagulación, lo que resulta en el depósito intravascular de fibrina y sangrado excesivo. El paciente politraumatizado sufre de inflamación sistémica mediada por citoquinas inflamatorias. En este contexto, el objetivo del presente estudio es relacionar las citoquinas inflamatorias con la condición de coagulación intravascular diseminada en pacientes politraumatizados. La revisión bibliográfica se realizó a partir del relevamiento de artículos científicos encontrados en las principales plataformas de búsqueda de artículos científicos: ScienceDirect, PubMed, SciELO y BIREME, de marzo de 2021 a marzo de 2022, utilizando los descriptores: politraumatismo; citocinas; Coagulación intravascular diseminada. La respuesta inflamatoria sistémica puede estar asociada con DIC donde las citocinas y las quimiocinas actúan como mediadores clave. Existe amplia evidencia de que existe una interferencia considerable entre la activación inflamatoria y la actividad hemostática. Esta interacción es bidireccional, por lo que la inflamación no solo conduce a la activación de la coagulación, sino que también activa las proteasas de la coagulación que también regulan la inflamación de manera importante. Los cambios en las concentraciones de las citoquinas G-SCF, Gro-α, IL-6, IL-8, IL-10 y MCP-1 se correlacionaron con la gravedad de la condición de los pacientes politraumatizados, lo que sugiere que estas citoquinas pueden desempeñar funciones protectoras en la inmunopatogénesis de pacientes politraumatizados y, por lo tanto, todas estas citoquinas pueden ser biomarcadores confiables potenciales para predecir el desarrollo del síndrome CVID en pacientes con politraumatismos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Eduardo de Sá Barbosa

Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí/ Instituto de Educação Superior do Vale do Parnaíba – FAHESP/IESVAP.

Kerolayne de Melo Nogueira

Laboratório de Estudos da Fisio-Farmacologia Gastrintestinal – LEFFAG - Universidade Federal do Ceará (UFC).

Luan Kelves Miranda de Souza

Instituto de Educação Superior do Vale do Parnaíba - IESVAP

Citas

ADELBORG, K.; LARSEN, J. B.; HVAS, A.M. Disseminated intravascular coagulation: epidemiology, biomarkers, and management. British Journal of Haematology, v. 192, n. 5, p. 803-818, 2021. DOI: https://doi.org/10.1111/bjh.17172

APAGEORGIOU, C. et al. Disseminated intravascular coagulation: an update on pathogenesis, diagnosis, and therapeutic strategies. Clinical and Applied Thrombosis/Hemostasis, v. 24, n. 9_suppl, p. 8S-28S, 2018. DOI: https://doi.org/10.1177/1076029618806424

BEDET, A. et al. Mechanisms of thrombocytopenia during septic shock: a multiplex cluster analysis of endogenous sepsis mediators. Shock: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches, v. 49, n. 6, p. 641-648, 2018. DOI: https://doi.org/10.1097/SHK.0000000000001015

DE MELO, I. S. F. et al. CANDIDA sp, UMA BREVE REVISÃO BIBLIOGRÁFICA. RECISATEC-REVISTA CIENTÍFICA SAÚDE E TECNOLOGIA-ISSN 2763-8405, v. 2, n. 5, p. e35129-e35129, 2022. DOI: https://doi.org/10.53612/recisatec.v2i5.129

DE ALMEIDA, C. E. R. et al. Traumatic brain injury epidemiology in Brazil. World neurosurgery, v. 87, p. 540-547, 2016. DOI: https://doi.org/10.1016/j.wneu.2015.10.020

DEKKER, A. E.; KRIJNEN, P.; SCHIPPER, I. B. Predictive value of cytokines for developing complications after polytrauma. World journal of critical care medicine, v. 5, n. 3, p. 187, 2016. DOI: https://doi.org/10.5492/wjccm.v5.i3.187

EFRON, P. A.; MOORE, F. A.; BRAKENRIDGE, S. C. Persistent inflammation, immunosuppression and catabolism after severe injury or infection. Annual Update in Intensive Care and Emergency Medicine 2018, p. 25-35, 2018. DOI: https://doi.org/10.1007/978-3-319-73670-9_3

FANG, Y. et al. Paeoniflorin alleviates lipopolysaccharide‐induced disseminated intravascular coagulation by inhibiting inflammation and coagulation activation. Drug Development Research, v. 81, n. 4, p. 517-525, 2020. DOI: https://doi.org/10.1002/ddr.21647

GANDO, S. et al. A multicenter prospective validation study on disseminated intravascular coagulation in trauma-induced coagulopathy. Journal of Thrombosis and Haemostasis, v. 18, n. 9, p. 2232-2244, 2020. DOI: https://doi.org/10.1111/jth.14931

GANDO, S. LEVI, M.; TOH, C.H. Disseminated intravascular coagulation. Nature Reviews Disease Primers, v. 2, n. 1, p. 1-16, 2016. DOI: https://doi.org/10.1038/nrdp.2016.37

GUISASOLA, M. C. et al. An overview of cytokines and heat shock response in polytraumatized patients. Cell stress and chaperones, v. 23, n. 4, p. 483-489, 2018. DOI: https://doi.org/10.1007/s12192-017-0859-9

HONORE, P. M. et al. Cytokine removal in human septic shock: where are we and where are we going?. Annals of intensive care, v. 9, n. 1, p. 1-13, 2019. DOI: https://doi.org/10.1186/s13613-019-0530-y

IBA, T. et al. The progression from coagulopathy to disseminated intravascular coagulation in representative underlying diseases. Thrombosis research, v. 179, p. 11-14, 2019. DOI: https://doi.org/10.1016/j.thromres.2019.04.030

ITO, T. et al. Thrombomodulin in disseminated intravascular coagulation and other critical conditions—a multi-faceted anticoagulant protein with therapeutic potential. Critical Care, v. 23, n. 1, p. 1-11, 2019. DOI: https://doi.org/10.1186/s13054-019-2552-0

JIANG, S. et al. Associations Among Disseminated Intravascular Coagulation, Thrombocytopenia Cytokines/Chemokines and Genetic Polymorphisms of Toll-Like Receptor 2/4 in Chinese Patients with Sepsis. Journal of Inflammation Research, v. 15, p. 1, 2022. DOI: https://doi.org/10.2147/JIR.S337559

JOHANSSON, P. I. et al. Disseminated intravascular coagulation or acute coagulopathy of trauma shock early after trauma? An observational study. Critical Care, v. 15, n. 6, p. 1-10, 2011. DOI: https://doi.org/10.1186/cc10553

KANY, S.; VOLLRATH, J. T.; RELJA, B. Cytokines in inflammatory disease. International journal of molecular sciences, v. 20, n. 23, p. 6008, 2019. DOI: https://doi.org/10.3390/ijms20236008

KHURANA, S. et al. Crosstalk between T Helper Cell Subsets and Their Roles in Immunopathogenesis and Outcome of Polytrauma Patients. Indian Journal of Critical Care Medicine: Peer-reviewed, Official Publication of Indian Society of Critical Care Medicine, v. 24, n. 11, p. 1037, 2020. DOI: https://doi.org/10.5005/jp-journals-10071-23577

LEVI, M. Pathogenesis and diagnosis of disseminated intravascular coagulation. International journal of laboratory hematology, v. 40, p. 15-20, 2018. DOI: https://doi.org/10.1111/ijlh.12830

LEVI, M.; SIVAPALARATNAM, S. Disseminated intravascular coagulation: an update on pathogenesis and diagnosis. Expert review of hematology, v. 11, n. 8, p. 663-672, 2018. DOI: https://doi.org/10.1080/17474086.2018.1500173

LUPU, F.; KINASEWITZ, G.; DORMER, K. The role of endothelial shear stress on haemodynamics, inflammation, coagulation and glycocalyx during sepsis. Journal of Cellular and Molecular Medicine, v. 24, n. 21, p. 12258-12271, 2020. DOI: https://doi.org/10.1111/jcmm.15895

NAMAS, R. A. et al. Insights into the role of chemokines, damage-associated molecular patterns, and lymphocyte-derived mediators from computational models of trauma-induced inflammation. Antioxidants & redox signaling, v. 23, n. 17, p. 1370-1387, 2015. DOI: https://doi.org/10.1089/ars.2015.6398

OSUKA, A. et al. Immune response to traumatic injury: harmony and discordance of immune system homeostasis. Acute Medicine & Surgery, v. 1, n. 2, p. 63-69, 2014. DOI: https://doi.org/10.1002/ams2.17

PATEL, P. et al. Markers of inflammation and infection in sepsis and disseminated intravascular coagulation. Clinical and Applied Thrombosis/Hemostasis, v. 25, p. 1076029619843338, 2019. DOI: https://doi.org/10.1177/1076029619843338

STOKOL, T. Disseminated intravascular coagulation. Schalm's veterinary hematology, p. 837-847, 2022. DOI: https://doi.org/10.1002/9781119500537.ch92

VAN BREUGEL, J. M. M. et al. Global changes in mortality rates in polytrauma patients admitted to the ICU a systematic review. World Journal of Emergency Surgery, v. 15, n. 1, p. 1-13, 2020. DOI: https://doi.org/10.1186/s13017-020-00330-3

VOGEL, M. et al. Distinct dynamics of stem and progenitor cells in blood of polytraumatized patients. Shock (Augusta, Ga.), v. 51, n. 4, p. 430, 2019. DOI: https://doi.org/10.1097/SHK.0000000000001198

VOLPIN, G. et al. Cytokine levels (IL-4, IL-6, IL-8 and TGFβ) as potential biomarkers of systemic inflammatory response in patients. International orthopaedics, v. 38, n. 6, p. 1303-1309, 2014 DOI: https://doi.org/10.1007/s00264-013-2261-2

WADA, T. et al. Disseminated intravascular coagulation immediately after trauma predicts a poor prognosis in severely injured patients. Scientific reports, v. 11, n. 1, p. 1-12, 2021. DOI: https://doi.org/10.1038/s41598-021-90492-0

WU, F. et al. Resuscitative Strategies to Modulate the Endotheliopathy of Trauma: From Cell to Patient: Resuscitation of the Endothelium. Shock (Augusta, Ga.), v. 53, n. 5, p. 575, 2020. DOI: https://doi.org/10.1097/SHK.0000000000001378

YAMAMOTO, A. et al. Soluble C-type lectin-like receptor 2 is a biomarker for disseminated intravascular coagulation. Journal of Clinical Medicine, v. 10, n. 13, p. 2860, 2021. DOI: https://doi.org/10.3390/jcm10132860

Publicado

2022-06-28

Cómo citar

Sá Barbosa, E. de, Melo Nogueira, K. de ., & Miranda de Souza, L. K. (2022). ANÁLISIS DE LA CORRELACIÓN DE CITOQUINAS INFLAMATORIAS Y DIC EN PACIENTES POLITRAUMADOS. REVISTA CIENTÍFICA RECISATEC - ISSN 2763-8405, 2(6), e26148. https://doi.org/10.53612/recisatec.v2i6.148

Artículos similares

También puede {advancedSearchLink} para este artículo.