USE OF ARTIFICIAL INTELLIGENCE IN THE DIAGNOSIS OF NEURODEGENERATIVE DISEASES: AN INTEGRATIVE REVIEW

Authors

DOI:

https://doi.org/10.53612/recisatec.v2i10.196

Keywords:

Artificial intelligence; Neurodegenerative; Diagnosis.

Abstract

Neurodegenerative diseases (NDs) are debilitating, incurable diseases that cause progressive and irreversible loss of neurons and other brain cells, and cause functional changes in the central nervous system (CNS), affecting movement and body function. This research aims to describe the use of artificial intelligence (AI) in the diagnosis of neurodegenerative diseases. This is descriptive research of the integrative literature review type. The search was carried out through online access to the Virtual Health Library (VHL) database, indexed in the Medical Literature Analysis and Retrieval System Online (MEDLINE) database. To search for the works, the keywords present in the Medical Subject Headings (MeSH) were used, they were: Artificial intelligence AND Neurodegenerative AND Diagnosis. The results showed that the most used AI tools in the diagnosis of neurodegenerative diseases are imaging biomarkers (positron emission tomography (PET) and single photon emission computed tomography (SPECT), in addition to Computer-Aided Design (CAD), machine learning, in English – Machine Learning (ML), use of Deep Learning (DL) applications. It was concluded that AI is an important tool for the diagnosis of neurodegenerative diseases, because, as demonstrated in the literature, the artificial intelligence reduces time, improves the accuracy and reliability of the diagnosis of neurodegenerative diseases.

Downloads

Download data is not yet available.

Author Biographies

Mariana Silva Souza

Enfermeira pela Christus Faculdade do Piauí (CHRISFAPI)

Sabrina Beatriz Mendes Nery

Mestranda em Ciências Biomédicas pela Universidade da Beira Interior, Covilhã

Suellen Munique Araújo

Mestranda em Ciências Biomédicas pela Universidade da Beira Interior, Covilhã

Paulo da Costa Araújo

Acadêmico de Medicina pelo Centro Universitário do Maranhão (UNICEUMA)

Ana Maria Couto Sousa

Acadêmica de Farmácia pelo Centro de Educação Tecnológica de Teresina (Faculdade CET)

Élida Brandão da Silva

Acadêmica de Enfermagem pelo Centro de Educação Tecnológica de Teresina (Faculdade CET)

Isabela Gonçalves do Nascimento

Enfermeira pela Christus Faculdade do Piauí (CHRISFAPI)

Emanoelle Maria de Sousa Braga

Acadêmica de Enfermagem pela Christus Faculdade do Piauí (CHRISFAPI)

Taynara Martelli Prado

Enfermeira pela Universidade José do Rosário Vellano

 

Suzana de Sousa Mano

Enfermeira pela Christus Faculdade do Piauí (CHRISFAPI)

Graziele Ferreira Nunes

Especialista em Hematologia, Hemoterapia, Banco e Sangue e Terapia Celular pela Faculdade Pitágoras

Ayla de Jesus Moura

Mestranda em Educação Física pela UNIVASF-PETROLINA

Ricardo de Carvalho Freitas

Mestre em Terapia Intensiva pelo IMBES/CES, Especialista em Saúde Materno-Infantil e Saúde da Família pela Universidade Federal do Maranhão (UFMA), Especialista em Saúde Pública pela Faculdade Latino Americana de Educação e Doutorando em Psicanálise pelo Instituto Oráculo de Psicanálise.

References

BELIĆ, Minja et al. Artificial intelligence for assisting diagnostics and assessment of Parkinson’s disease - A review. Clinical neurology and neurosurgery, v. 184, p. 105442, 2019. Disponível em: https://doi.org/10.1016/j.clineuro.2019.105442. Acesso em: 28 abr. 2022. DOI: https://doi.org/10.1016/j.clineuro.2019.105442

BRZEZICKI, Maksymilian A. et al. Diagnostic accuracy of frontotemporal dementia. An artificial intelligence-powered study of symptoms, imaging and clinical judgement. Advances in Medical Sciences, v. 64, n. 2, p. 292-302, 2019. Disponível em: https://doi.org/10.1016/j.advms.2019.03.002. Acesso em: 28 abr. 2022. DOI: https://doi.org/10.1016/j.advms.2019.03.002

CAI, Zhennao et al. An intelligent Parkinson’s disease diagnostic system based on a chaotic bacterial foraging optimization enhanced fuzzy KNN approach. Computational and mathematical methods in medicine, v. 2018, 2018. Disponível em: https://doi.org/10.1155/2018/2396952. Acesso em: 28 abr. 2022. DOI: https://doi.org/10.1155/2018/2396952

CHANG, Chun-Hung; LIN, Chieh-Hsin; LANE, Hsien-Yuan. Machine learning and novel biomarkers for the diagnosis of Alzheimer’s disease. International Journal of Molecular Sciences, v. 22, n. 5, p. 2761, 2021. Disponível em: https://doi.org/10.3390/ijms22052761. Acesso em: 28 abr. 2022. DOI: https://doi.org/10.3390/ijms22052761

GIANNAKOPOULOU, Konstantina-Maria; ROUSSAKI, Ioanna; DEMESTICHAS, Konstantinos. Internet of Things Technologies and Machine Learning Methods for Parkinson’s Disease Diagnosis, Monitoring and Management: A Systematic Review. Sensors, v. 22, n. 5, p. 1799, 2022. Disponível em: https://doi.org/10.3390/s22051799. Acesso em: 28 abr. 2022. DOI: https://doi.org/10.3390/s22051799

LIU, Xiaonan et al. Use of multimodality imaging and artificial intelligence for diagnosis and prognosis of early stages of Alzheimer's disease. Translational Research, v. 194, p. 56-67, 2018. Disponível em: https://doi.org/10.1016/j.trsl.2018.01.001. Acesso em: 28 abr. 2022. DOI: https://doi.org/10.1016/j.trsl.2018.01.001

LOH, Hui Wen et al. Application of deep learning models for automated identification of Parkinson’s disease: a review (2011–2021). Sensors, v. 21, n. 21, p. 7034, 2021. Disponível em: https://doi.org/10.3390/s21217034. Acesso em: 28 abr. 2022. DOI: https://doi.org/10.3390/s21217034

MENDES, Karina Dal Sasso; SILVEIRA, Renata Cristina de Campos Pereira; GALVÃO, Cristina Maria. Uso de gerenciador de referências bibliográficas na seleção dos estudos primários em revisão integrativa. Texto & Contexto-Enfermagem, v. 28, 2019. Disponível em: https://www.scielo.br/j/tce/a/HZD4WwnbqL8t7YZpdWSjypj/?format=html&lang=pt. Acesso em: 28 abr. 2022.

MYSZCZYNSKA, Monika A. et al. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nature Reviews Neurology, v. 16, n. 8, p. 440-456, 2020. Disponível em: https://doi.org/10.1038/s41582-020-0377-8. Acesso em: 28 abr. 2022. DOI: https://doi.org/10.1038/s41582-020-0377-8

SILVA-SPÍNOLA, Anuschka et al. The road to personalized medicine in Alzheimer’s disease: The use of artificial intelligence. Biomedicines, v. 10, n. 2, p. 315, 2022. Disponível em: https://doi.org/10.3390/biomedicines10020315. Acesso em: 28 abr. 2022. DOI: https://doi.org/10.3390/biomedicines10020315

TAUTAN, Alexandra-Maria; IONESCU, Bogdan; SANTARNECCHI, Emiliano. Artificial intelligence in neurodegenerative diseases: A review of available tools with a focus on machine learning techniques. Artificial Intelligence in Medicine, v. 117, p. 102081, 2021. Disponível em: https://doi.org/10.1016/j.artmed.2021.102081. Acesso em: 28 abr. 2022. DOI: https://doi.org/10.1016/j.artmed.2021.102081

VITALE, Annalisa et al. Artificial intelligence applied to neuroimaging data in Parkinsonian syndromes: Actuality and expectations. Math. Biosci. Eng, v. 18, p. 1753-1773, 2021. Disponível em: http://www.aimspress.com/journal/MBE. Acesso em: 28 abr. 2022. DOI: https://doi.org/10.3934/mbe.2021091

XU, Jingjing; ZHANG, Minming. Use of magnetic resonance imaging and artificial intelligence in studies of diagnosis of Parkinson’s disease. ACS chemical neuroscience, v. 10, n. 6, p. 2658-2667, 2019. Disponível em: https://pubs.acs.org/doi/pdf/10.1021/acschemneuro.9b00207. Acesso em: 28 abr. 2022. DOI: https://doi.org/10.1021/acschemneuro.9b00207

Published

2022-10-10

How to Cite

Silva Souza, M., Nery, S. B. M. ., Araújo, S. M. ., Araújo, P. da C. ., Sousa, A. M. C. ., Silva, Élida B. da ., … Freitas, R. de C. (2022). USE OF ARTIFICIAL INTELLIGENCE IN THE DIAGNOSIS OF NEURODEGENERATIVE DISEASES: AN INTEGRATIVE REVIEW. RECISATEC SCIENTIFIC JOURNAL - ISSN 2763-8405, 2(10), e210196. https://doi.org/10.53612/recisatec.v2i10.196

Similar Articles

<< < 1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.