LOS FUNDAMENTOS DE LA TERAPIA Y LA NEUROCIENCIA PARA EL ALTO RENDIMIENTO DEPORTIVO

Autores/as

DOI:

https://doi.org/10.53612/recisatec.v2i7.152

Palabras clave:

Neurociencia , Deporte, Alto rendimiento, Terápeutica

Resumen

Este artículo es solo una vista previa, una copia del trabajo realizado para un alto rendimiento del atleta con el uso de las neurociencias, es decir, utilizando la neuroanatomía del sistema nervioso, con métodos que están científicamente probados y firmados por científicos médicos, donde los individuos son evaluados en función de sus matices desde la historia del comportamiento, como a través de la posibilidad de usar neuroimágenes o comprensión del cerebro que revelan las verdaderas razones del comportamiento, así como las regiones cerebrales relacionadas en su conjunto para una mayor efectividad posible y un alto rendimiento.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Fabiano de Abreu Rodrigues

Logos University international

Citas

BRÜMMER, V. et al. Primary motor cortex activity is elevated with incremental exercise intensity. Neuroscience, v. 181, p. 150–162, 2011. DOI: https://doi.org/10.1016/j.neuroscience.2011.02.006

CHERON, G. et al. Brain oscillations in sport: Toward EEG biomarkers of performance. Frontiers in psychology, v. 7, 2016. DOI: https://doi.org/10.3389/fpsyg.2016.00246

DRAGANSKI, B. et al. Changes in grey matter induced by training. Nature, v. 427, n. 6972, p. 311–312, 2004. DOI: https://doi.org/10.1038/427311a

DUNST, B. et al. Neural efficiency as a function of task demands. Intelligence, v. 42, p. 22–30, 2014. DOI: https://doi.org/10.1016/j.intell.2013.09.005

FREUD, Sigmund. Livro 29. 1ed.São Paulo:ed.sujetadores,1993.

DWECK, C. Mentalidades, Desarrollando, Talento através de una Mentalidad de Crecimento. Entrenador olímpico, v. 21, 2009.

JI, J. L. et al. Mapping the human brain’s cortical-subcortical functional network organization. NeuroImage, v. 185, p. 35–57, 2019. DOI: https://doi.org/10.1016/j.neuroimage.2018.10.006

LIGHT, G. A. et al. Electroencephalography (EEG) and event‐related potentials (ERPs) with human participants. et al [Current protocols in neuroscience], v. 52, n. 1, 2010. DOI: https://doi.org/10.1002/0471142301.ns0625s52

LIN, T.-W.; TSAI, S.-F.; KUO, Y.-M. Physical exercise enhances neuroplasticity and delays Alzheimer’s disease. Brain plasticity, v. 4, n. 1, p. 95–110, 2018. DOI: https://doi.org/10.3233/BPL-180073

MEIER, J.; TOPKA, M. S.; HÄNGGI, J. Differences in cortical representation and structural connectivity of hands and feet between professional handball players and ballet dancers. Neural plasticity, v. 2016, p. 1–17, 2016. DOI: https://doi.org/10.1155/2016/6817397

NAITO, E.; HIROSE, S. Efficient foot motor control by Neymarâ€TMs brain. Frontiers in human neuroscience, v. 8, 2014. DOI: https://doi.org/10.3389/fnhum.2014.00594

ORBAN, P. et al. The multifaceted nature of the relationship between performance and brain activity in motor sequence learning. NeuroImage, v. 49, n. 1, p. 694–702, 2010. DOI: https://doi.org/10.1016/j.neuroimage.2009.08.055

PAGÁN, O. R. The brain: a concept in flux. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, v. 374, n. 1774, p. 20180383, 2019. DOI: https://doi.org/10.1098/rstb.2018.0383

PARK, S.-B. et al. Transcranial Direct Current Stimulation of motor cortex enhances running performance. PloS one, v. 14, n. 2, p. e0211902, 2019. DOI: https://doi.org/10.1371/journal.pone.0211902

PILAY, S. Las recompensas que faltan que motivan cambios saludables en el estilo de vida.

Harvard Health Publishing, 2016

SEVERENS, M. et al. Feasibility of measuring event Related Desynchronization with electroencephalography during walking. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Anais...IEEE, 2012. DOI: https://doi.org/10.1109/EMBC.2012.6346537

SUN, F. T. et al. Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cerebral cortex (New York, N.Y.: 1991), v. 17, n. 5, p. 1227–1234, 2006. DOI: https://doi.org/10.1093/cercor/bhl033

SYMEONIDOU, E.-R. et al. Effects of cable sway, electrode surface area, and electrode mass on electroencephalography signal quality during motion. Sensors (Basel, Switzerland), v. 18, n. 4, p. 1073, 2018. DOI: https://doi.org/10.3390/s18041073

TAN, H. Y.; CHO, H.; LEE, L. P. Modelos de mini-cérebros humanos. Natureza biomédica engenharia. v.5, n.1, págs. 11-25, 2021 DOI: https://doi.org/10.1038/s41551-020-00643-3

THOMPSON, T. et al. EEG applications for sport and performance. Methods, v. 45, p. 279–288, 2008. DOI: https://doi.org/10.1016/j.ymeth.2008.07.006

VAN GERVEN, M. et al. The brain–computer interface cycle. Journal of neural engineering, v. 6, n. 4, p. 041001, 2009. DOI: https://doi.org/10.1088/1741-2560/6/4/041001

WITTMER, J. L. S.; HOPKINS, M. M. Leading remotely in a time of crisis: Relationships with emotional intelligence. Journal of leadership & organizational studies, v. 29, n. 2, p. 176–189, 2022. DOI: https://doi.org/10.1177/15480518211053531

YARROW, K.; BROWN, P.; KRAKAUER, J. W. Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nature reviews. Neuroscience, v. 10, n. 8, p. 585–596, 2009. DOI: https://doi.org/10.1038/nrn2672

Publicado

2022-06-30

Cómo citar

Abreu Rodrigues, F. de. (2022). LOS FUNDAMENTOS DE LA TERAPIA Y LA NEUROCIENCIA PARA EL ALTO RENDIMIENTO DEPORTIVO. RECISATEC - REVISTA CIENTÍFICA SALUD Y TECNOLOGÍA, 2(7), e27152. https://doi.org/10.53612/recisatec.v2i7.152

Artículos similares

1 2 3 > >> 

También puede {advancedSearchLink} para este artículo.